Definitions | e loc e' , x:A B(x), x:A. B(x), s = t, t T, strong-subtype(A;B), P  Q, ES, AbsInterface(A), E(X), (e <loc e'), b, A, prior(X), X(e), e (e1,e2].P(e), @e(x v), (last change to x before e), x:A B(x), P & Q, A c B, pred(e), Id, (e < e'), left + right, {x:A| B(x)} , e < e', case b of inl(x) => s(x) | inr(y) => t(y), if b then t else f fi , Void, False, Top, e  X, E, P Q, P  Q, P   Q, e c e', lastchange(x;e), es-init(es;e), True, {T}, loc(e), kind(e), Knd, a:A fp B(a), <a, b>, let x,y = A in B(x;y), t.1, , Type, EqDecider(T), Unit, IdLnk, EOrderAxioms(E; pred?; info), f(a), EState(T),  x. t(x),  x,y. t(x;y), kindcase(k; a.f(a); l,t.g(l;t) ), Msg(M), type List, , , val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), r s, constant_function(f;A;B), loc(e), kind(e), first(e), source(l), destination(l), isrcv(e), es-first-from(es;e;l;tg), isrcv(k), Atom$n, Dec(P), x:A. B(x), e<e'.P(e), e e'.P(e), e<e'. P(e), e e'.P(e), e [e1,e2).P(e), e [e1,e2).P(e), e [e1,e2].P(e), e [e1,e2].P(e), e (e1,e2].P(e), f g, f(x)?z, vartype(i;x), state@i, State(ds), State(ds), x dom(f), T, , b | a, a ~ b, a b, a <p b, a < b, x f y, x L. P(x), ( x L.P(x)), r < s, q-rel(r;x), Outcome, (x l), l_disjoint(T;l1;l2), SqStable(P), a =!x:T. Q(x), InvFuns(A;B;f;g), Inj(A;B;f), IsEqFun(T;eq), Refl(T;x,y.E(x;y)), Sym(T;x,y.E(x;y)), Trans(T;x,y.E(x;y)), AntiSym(T;x,y.R(x;y)), Connex(T;x,y.R(x;y)), CoPrime(a,b), Ident(T;op;id), Assoc(T;op), Comm(T;op), Inverse(T;op;id;inv), BiLinear(T;pl;tm), IsBilinear(A;B;C;+a;+b;+c;f), IsAction(A;x;e;S;f), Dist1op2opLR(A;1op;2op), fun_thru_1op(A;B;opa;opb;f), FunThru2op(A;B;opa;opb;f), Cancel(T;S;op), monot(T;x,y.R(x;y);f), IsMonoid(T;op;id), IsGroup(T;op;id;inv), IsMonHom{M1,M2}(f), a b, IsIntegDom(r), IsPrimeIdeal(R;P), SWellFounded(R(x;y)), pred!(e;e'), pred(e), first(e) |